OXYGEN THERAPY IN ACUTE RESPIRATORY FAILURE - pediagenosis
Article Update
Loading...

Tuesday, June 8, 2021

OXYGEN THERAPY IN ACUTE RESPIRATORY FAILURE

OXYGEN THERAPY IN ACUTE RESPIRATORY FAILURE

OXYGEN THERAPY IN ACUTE RESPIRATORY FAILURE


ARTERIAL BLOOD GAS COMPOSITION

Arterial blood gas (ABG) findings can be explained by the carbon dioxide: oxygen diagram shown at the top of the illustration. Because there is no uptake or excretion of nitrogen during respiration and the alveolar partial pressure of water vapor is a function of body temperature only, there is a reciprocal relationship between the alveolar Pco2   and Po2, as indicated by the alveolar gas composition line.  Because prolonged survival is not possible when the PaO2    is less than 20 mm Hg, the range of arterial gas tensions compatible with life is confined to the yellow triangle. Initial ABG values of air-breathing patients with decompensated chronic obstructive pulmonary disease (COPD) fall in the upper shaded blue area. With higher oxygen concentrations, the alveolar gas composition line is shifted to the right, and much higher PaCO2 values are possible.

Fortunately, because of the shape of the hemoglobin dissociation curve, only a small increase in oxygen tension is necessary to produce a marked increase in arterial oxygen content. In most patients, a 15-mm Hg increase in arterial oxygen tension can be produced by increasing the inspired oxygen fraction by only 4% to 7%. Administration of low oxygen concentrations (24%-35%) and low flows (1-3 L/min) can be achieved by use of a nasal cannula (see Plate 5-13). Care must be given to supplying enough oxygen to achieve adequate oxygenation (SaO2>90%) without causing too much CO2 retention, which may occur during acute exacerbations in patients with severe COPD. Contrary to popular belief, CO2 retention in COPD is caused by a worsening mismatch of ventilation and perfusion in the presence of excessive oxygen with a resulting increase in dead space ventilation, as well as an increased offloading of CO2 by hemoglobin, rather than a reduced drive to breathe.

 

CARE AND MONITORING DURING OXYGEN THERAPY

Although measurement  of  AGBs  is  of  prime  importance in patients receiving oxygen for acute respiratory failure, a reduction in cardiac output, hemoglobin concentration,  or  local  blood  flow,  a  shift  in  position  of the oxygen dissociation curve, or an increase in tissue requirements can result in inadequate oxygen delivery to the tissues even if the PaO2  is normal. Although there is no specific way to assess the level of tissue oxygenation, tissue hypoxia probably exists if the mixed venous Po2 is less than 35 mm Hg. Monitoring and correcting abnormalities of cardiovascular function and hemoglobin concentration minimize tissue hypoxia.

Oxygen requirements may change during therapy, and a patient’s respiratory, cardiovascular, and mental status should be evaluated often. Patients should be observed during sleep, when their breathing patterns may be different. Sedation should be avoided.

Pulse oximetry is a convenient and noninvasive method for monitoring oxyhemoglobin saturation; however, its limitations must be appreciated. The method does not allow direct measurement of Po2, Pco2, or pH, and accuracy may be affected by many factors, including skin pigmentation, adequate capillary blood flow, external light conditions, and alternative hemoglobin species such as carboxy- and methemoglobin. New pulse oximeters that use co-oximetry to determine the presence of these other hemoglobin species are being introduced into clinical practice.


Share with your friends

Give us your opinion

Note: Only a member of this blog may post a comment.

Notification
This is just an example, you can fill it later with your own note.
Done