Immunity To Bacteria - pediagenosis
Article Update
Loading...

Thursday, August 2, 2018

Immunity To Bacteria


Immunity To Bacteria
Unlike viruses, bacteria are cellular organisms, mostly capable of fully independent life, but some live on or in larger animals some or all of the time. Indeed, it is estimated that each human is colonized by some 1014 bacteria, equivalent to 10 bacteria for every cell of the body. This microbiome is made up of several thousand different species, most of which are innocuous and may even have a beneficial role in enhancing human health. However, a few species can cause disease and, together with viruses, these now constitute the major infectious threat to health in developed countries. Since the discovery of antibiotics, bacterial infection has been controlled largely by chemotherapy. However, with the recent rise in antibiotic-resistant strains of bacteria, there is renewed interest in developing new or improved vaccines against the bacteria responsible for such diseases as tuberculosis, meningitis and food poisoning.

Immunity To Bacteria

The usual destiny of unsuccessful bacteria is death by phagocytosis; survival therefore entails avoidance of this fate. The main ways in which a bacterium (top left) can achieve this lie in the capsule (affecting attachment), the cell wall (affecting digestion) and the release of exotoxins (which damage phagocytic and other cells). Fortunately, most capsules and toxins are strongly antigenic and antibody overcomes many of their effects; this is the basis of the majority of antibacterial vaccines. In the figure, processes beneficial to the bacteria or harmful to the host are shown in broken lines. Bacteria living on body surfaces (e.g. teeth) can form colonies (‘biofilms’) which protect them against both immunity and antibiotics. As with viruses, some of the most virulent and obstinate bacterial infections are zoonoses – plague (rats) and brucellosis (cattle) being examples. Bacteria that manage to survive in macrophages (e.g. tuberculosis [TB]) can induce severe immune-mediated tissue damage (see Fig. 37).
Cell wall Outside their plasma membrane (M in the figure) bacteria have a cell wall composed of a mucopeptide called peptidoglycan (PG); it is here that lysozyme acts by attacking the N-acetylmuramic acid–N-acetylglucosamine links. In addition, Gram-negative bacteria have a second membrane with lipopolysaccharides (LPS, also called endotoxin) inserted in it. Bacterial cell walls are powerful inducers of inflammation, largely through their ability to activate the Toll-like receptors of innate immunity (see Figs 3 and 5).
Flagella, the main agent of bacterial motility, contain highly antigenic proteins (the ‘H antigens’ of typhoid, etc.), which give rise to immobilizing antibody. Some flagellar proteins activate the Toll-like receptor TLR5 (see Fig. 5).
Pili  are used by bacteria to adhere to cells; antibody can prevent this (e.g. IgA against gonococcus).
Capsule Many bacteria owe their virulence to capsules, which protect them from contact with phagocytes. Most are large, branched, polysaccharide molecules, but some are protein. Many of these capsular polysaccharides, and also some proteins from flagella, are T-independent antigens (see Fig. 19). Examples of capsulated bacteria are pneumococcus, meningococcus and Haemophilus spp.
Exotoxins (as distinct from the endotoxin [LPS] of cell walls) Gram-positive bacteria often secrete proteins with destructive effects on phagocytes, local tissues, the CNS, etc.; frequently, these are the cause of death. In addition there are proteins collectively known as aggressins that help the bacteria to spread by dissolving host tissue.
Sepsis Occasionally, uncontrolled systemic responses to bacterial infection develop, which can lead to rapid life-threatening disease (‘toxic shock’). Such responses are still an important cause of death after major surgery. Over-production of TNF-α, especially by macro- phages, has a major role in these reactions.

Bacteria
Here, bacteria are given their popular rather than their proper taxonomic names. Some individual aspects of interest are listed below:
Strep Streptococcus, classified either by haemolytic exotoxins (α, β, γ) or cell wall antigens (groups A–Q). Group A β-haemolytic are the most pathogenic, possessing capsules (M protein) that attach to mucous membranes but that resist phagocytosis, numerous exotoxins (whence scarlet fever), indigestible cell walls causing severe cell-mediated reactions, antigens that cross-react with cardiac muscle (rheumatic fever) and a tendency to kidney-damaging immune complexes.
Staph Staphylococcus. Antiphagocytic factors include the fibrinforming enzyme coagulase and protein A, which binds to the Fc portion of IgG, blocking opsonization. Numerous other toxins make staphylococci highly destructive, abscess-forming organisms. Large-scale use of antibiotics has caused the emergence of bacterial strains resistant to many antibiotics (methicillin-resistant Staphyloccus aureus [MRSA]), which are now proving a serious threat, particularly as hospital-acquired infections.

Pneumococcus (now S. pneumoniae), meningococcus  Typed  by the polysaccharides of their capsules, and especially virulent in the tropics, where vaccines made from capsular polysaccharides are proving highly effective in preventing epidemics. Also more common in patients with deficient antibody responses (see Fig. 33). Chemical coupling of the capsular polysaccharides to a protein, such as diphtheria toxoid, converts these antigens from T-cell independent to T-cell dependent, thus greatly increasing memory and potency. Such conjugate vaccines have proven highly effective at preventing childhood meningitis and Haemophilus infection.
Gonococcus IgA may block attachment to mucous surfaces, but the bacteria secrete a protease that destroys the IgA; thus, the infection is seldom eliminated, leading to a ‘carrier’ state. Gonococci and meningococci are the only bacteria definitely shown to be disposed of by complement-mediated lysis.
Tuberculosis and leprosy bacilli These mycobacteria have very tough cell walls, rich in lipids, which resist intracellular killing; they can also inhibit phagosome–lysosome fusion. Chronic cell-mediated immunity results in the formation of granuloma, tissue destruction and scarring (see Fig. 37). In leprosy, a ‘spectrum’ between localization and dissemination corresponds to the predominance of cell-mediated immunity and of antibody, respectively. Tuberculosis is once again on the rise, partly as a result of increased travel, partly because of increased drug resistance and partly as a consequence of AIDS, and better vaccines to replace the only partially effective BCG (bacille Calmette– Guérin) are urgently being sought.
Escherichia coli is now perhaps the best-known bacterial species in the world, because of its ubiquitous use as a tool in all molecular biology laboratories. However, the species is a made up of an enormous number of different strains. Most are harmless inhabitants of the intestine of many mammals including humans, and may even be beneficial in sup- plying some vitamins and in suppressing the growth of other pathogenic bacteria. But a few strains produce exotoxins and have been responsible for major outbreaks of food poisoning. Shigella (causing dysentery) and cholera are two other examples of bacteria that grow only in the intestine, and are responsible for important human diseases.
Salmonella (e.g. S. typhi) also infects the intestine but can survive and spread to other parts of the body within macrophages. Recovery after infections may lead to a ‘carrier’ state.
Tetanus owes its severity to the rapid action of its exotoxin on the CNS. Antibody (‘antitoxin’) is highly effective at blocking toxin action, an example where neither complement nor phagocytic cells are needed.
Diphtheria also secretes powerful neurotoxins, but death can be due to local tissue damage in the larynx (‘false membrane’).
Syphilis is an example of bacteria surviving all forms of immune attack without sheltering inside cells. The commonly found autoantibody to mitochondrial cardiolipin is the basis of the diagnostic Wasserman reaction. Cross-reactions of this type, due presumably to bacterial attempts to mimic host antigens and thus escape the attentions of the immune system, are clearly a problem to the host, which has to choose between ignoring the infection and making autoantibodies (see Fig. 38) that may be damaging to its own tissues. Borrelia, another spirochaete, has the property (found also with some viruses and protozoa) of varying its surface antigens to confuse the host’s antibody-forming system. As a result, waves of infection are seen (‘relapsing fever’).
Brucella may do the same.

Share with your friends

Give us your opinion
Notification
This is just an example, you can fill it later with your own note.
Done